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ABSTRACT 
The discrete element method (DEM) is adopted to simulate the triaxial tests of granular materials in this 
study. In the DEM simulations, two different membrane-forming methods are used to generate triaxial 
samples. One method is to pack the internal particles first, then to generate the enclosed membrane; the 
other is to generate the internal particles and the enclosed membrane together. A definition of 
the effective strain, which combines microscopic numerical results with macroscopic expression in three- 
dimensional space, is presented to describe the macroscopic deformation process of granular materials. 
With these two membrane generation methods, the effective strain distributions in longitudinal section 
and transverse section of the triaxial sample are described to investigate the progressive failure and the 
evolution of the shear bands in granular materials. Two typical shear band failure modes in triaxial tests are 
observed in the DEM simulations with different membrane-forming methods. One is a single shear band 
like a scraper bowl, and the other is an axial symmetric shear band like two hoppers stacking as the shape 
of rotational “X” in triaxial sample. The characteristics of the shear bands during the failure processes are 
discussed in detail based on the DEM simulations. 
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DEM; effective strain; 
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Introduction 

Under external loads, the intense deformation of granular 
materials, such as dense sand, usually occurs in relatively 
concentrated narrow regions (called shear bands). This 
phenomenon is also called strain localization and is usually 
related to the strain-softening property of the material. The 
mechanism for strain localization and formation of 
shear bands is an important topic in the study of granular 
materials. 

The shear bands developed in geomaterial are analyzed by 
experiments and modeled by numerical simulation. Experi-
mental studies of the development and formation of the shear 
bands are mainly based on triaxial and plane strain tests. The 
plane strain test is more usually used because the shear band 
failure is easily triggered and observed in this condition. 
Vardoulakis (1980) and Desrues et al. (1985) developed plane 
strain apparatus for this study. Oda, Konishi, and Nemat- 
Nasser (1982) observed the microstructural changes and devel-
opment of shear bands in a sand specimen, which provided 
information about the thickness and direction of shear bands. 
Zhao and Zhang (2003) modified the true triaxial apparatus 
to do plane strain tests, which were used to study the develop-
ment and formation of the shear bands in soils. Sun, Huang, 
and Yao (2008) used a true triaxial apparatus equipped with 
three pairs of rigid loading platens to test sand sample under 
three-dimensional (3D) stress condition. To detect the individ-
ual sand grains, and provide detailed particle position and 
contact maps and calculations of local void ratios, the 

technique of computed tomography (CT) has been used in 
the tests for granular materials (Desrues et al. 1996; Alshibli 
et al. 2000; Oda, Takemura, and Takahashi 2004; Alshibli and 
Hasan 2008). More recently, based on digital image correlation 
(DIC) technique, Shao, Wang, and Han (2001) developed and 
manufactured triaxial apparatus to measure and capture the 
local deformation appearing on the surface of the soil sample. 
Nowadays, the technique of DIC is broadly used to directly 
quantify local displacements on the surfaces of sand specimens 
throughout plane strain compression (Chupin, Rechenmacher, 
and Abedi 2011; Rechenmacher, Abedi, and Chupin 2010; 
Rechenmacher et al. 2011). Combining the techniques of CT 
and DIC, the initial, spatial, mesoscale parameter variation in 
the specimen as well as the specimen deformation fields before 
and after localization can be measured (Hall et al. 2010; Borja 
et al. 2013). 

Generally speaking, the shear band modes occurring in 
ordinary triaxial test are very complicated and difficult to be 
captured because most part of the shear bands locate in the 
interior part of the sample and keep unseen. In this condition, 
numerical simulation, combined with experiments, may be the 
efficient way to study the development of the shear bands. 

To illustrate the mechanics of shear bands, the discrete 
element method (DEM) is used to analyze and simulate the 
triaxial test of granular material. Granular material is an 
assembly of discrete particles which are in contact with each 
other at a microscopic level. It has been recognized that micro-
structure properties, such as particle packing style, distribution 
of void ratios, and their evolution, control the macroscopic 
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behavior of granular materials. The DEM has been widely used 
to investigate the failure micro-mechanism of granular materi-
als because of its ability to obtain the microscopic information 
at the particle level (Cundall and Strack 1979; Chang and Misra 
1988; Zhang and White 1998; Oda and Kazama 1998; Oda and 
Iwashita 1999). DEM allows for a contact model between two 
particles, viz. force� displacement law, to calculate the contact 
force. The physical properties and relative motion mechanism 
of particles in granular material are reflected by the contact 
models between particles. Using different contact models, 
different macroscopic behaviors can be achieved with DEM 
(Al-Raoush 2007; Kozicki and Donze 2009; Abe, Van, and Urai 
2011; Hare and Ghadiri 2013). Also, DEM is used to model 
the triaxial tests. Belheine et al. (2009) simulated the ordinary 
triaxial test with 3D DEM in which the roughness of grains 
was taken into account. Using a 3D spherical discrete model 
with a rolling resistance, Christophe, Philippe, and Pascal 
(2009) modelled the triaxial test to study the influence of 
relative density on granular materials behavior. 

Compared with the rigid boundary usually utilized in DEM, 
the flexible boundary can reflect the localized deformation 
phenomena better, and explain the overall macroscopic mech-
anical behavior of geomaterials from the view of mesoscopic 
particles (Geraldine and Catherine 2008). This paper imitates 
lateral membrane of the triaxial sample as a flexible boundary 
of the numerical model. Based on a widely used and commer-
cially available 3D DEM code, PFC3D, two methods are used 
to generate the particles and the membrane for triaxial sample: 
one is to generate the internal particles first, then to generate 
the enclosed membrane; the other is to generate them at the 
same time. 

To understand and describe the macroscopic deformation 
process and the evolution of shear bands in granular material, 
a macroscopic definition of effective strain, which combines 
microscopic numerical results with macroscopic expression 
in 3D space, is presented. With these methods, the mechanical 
behavior of granular materials in triaxial test is studied, and 
two typical shear band failure modes are obtained. 

Discrete element method and definition of 
effective strain for granular material 

Introduction of the DEM 

The DEM used in the present study is described in Figure 1. 
The normal contact force, the tangential contact force between 
particles in contact are computed as 

Fn ¼ knUn þ cn
dUn
dt

Ft ¼ minðksUs þ cs
dUs
dt ; ls Fnj jÞ

(

; ð1Þ

where Fn is the normal contact force; Ft, the tangential contact 
force; kn, the stiffness coefficient of normal force; ks, the stiff-
ness coefficient of sliding force; Un, the normal displacement; 
Us, the tangential sliding displacement; cn, the viscous 
damping coefficient of normal force; cs, the viscous damping 
coefficient of sliding force; and μs, the sliding friction force 
coefficient. 

Definition of effective strain of granular materials 

In order to understand the microscopic mechanism of the 
mechanical response of granular materials, and describe 
the macroscopic deformation process of granular materials, 
this paper attempts to combine microscopic numerical experi-
ments with macroscopic expression and presents a definition 
of the effective strain of granular material in three dimensions, 
which is used to analyze the evolution of shear band and strain 
localization in triaxial test. 

There are many strain definitions, such as the best-fit 
strains (Liao et al. 1997) and the strains defined on the basis 
of an equivalent continuum (Bagi 1996). Based on the changes 
of the center location of the particles, a nominal effective strain 
was used to measure the relative change of location between 
the particle and its surrounding particles in two dimensions 
(Li et al. 2005). In this study, the definition of effective strain 
is extended to 3D conditions. The nominal effective 
strain defined in three dimensions is as follows. 

As is shown in Figure 2, consider the position change of 
two neighboring particles during the time-step from t1 to t2. 
Referring to the global coordinates, the center coordinates 
of the particles A and B are X1

A, X1
B in t1 and X2

A, X2
B in t2, 

respectively. The angles between the axis of X, Y, Z in global 
coordinate and the corresponding local coordinates are a1, 
b1, c1 in t1 and a2, b2, c2 in t2, respectively. 

Referring to global coordinates, the difference between the 
center position of particles A and B in t1 and t2 

DX1
BA ¼ X1

B � X1
A; DX2

BA ¼ X2
B � X2

A: ð2Þ

Referring to local coordinate system, 

Dx1
BA ¼ x1

B � x1
A; Dx2

BA ¼ x2
B � x2

A: ð3Þ

By coordinate transformation system, 

Dx1
BA ¼ T1DX1

BA; Dx2
BA ¼ T2DX2

BA: ð4Þ

The local coordinate system can be rotated b′1 radian 
circling y1 direction, then rotated c′1 radian circling z1 
direction, so as to coincide with the direction of the global 
coordinate system in t1. Similarly, the local coordinate system 
can be rotated b′2 radian circling y2 direction, then rotated c′2 
radian circling z2 direction, so as to coincide with the direction 
of the global coordinate system in t2. The coordinate trans-
formation matrixes from the local coordinate system to the 
global coordinate system are T1 in t1 and T2 in t2, respectively. 

T1 ¼

cos c01 sin c01 0
� sin c01 cos c01 0

0 0 1

2

4

3

5
cos b01 0 � sin b01

0 1 0
sin b01 0 cos b01

2

4

3

5; ð5Þ

T2 ¼

cos c02 sin c02 0
� sin c02 cos c02 0

0 0 1

2

4

3

5
cos b02 0 � sin b02

0 1 0
sin b02 0 cos b02

2

4

3

5: ð6Þ

Deformation gradient f is used to describe the relative 
location change between particles A and B, for which the polar 
decomposition is written as 

278 H. TANG ET AL. 



f ¼
Dx2

BA
Dx1

BA
¼ RU: ð7Þ

In Equation (7), R is the orthogonal tensor, which represents 
the rotation of the connecting line between particles A and B; 
and U is a positive definite symmetric tensor, which represents 
the tensile deformation of the connecting line between particles 
A and B. Here, we have 

R ¼
cos c01 sin c01 0
� sin c01 cos c01 0

0 0 1

2

6
4

3

7
5

cos b02 � b01ð Þ 0 sin b02 � b01ð Þ

0 1 0
� sin b02 � b01ð Þ 0 cos b02 � b01ð Þ

2

6
4

3

7
5

cos c02 � sin c02 0
sin c02 cos c02 0

0 0 1

2

6
4

3

7
5;

ð8Þ

U ¼
kAB 0 0

0 1 0
0 0 1

2

4

3

5; ð9Þ

kAB¼lAB
2

l1
AB

l1
AB ¼ Dx1

BA
�
�

�
�

l2
AB ¼ Dx2

BA
�
�

�
�

8
><

>:
; ð10Þ

where || means the modulus of a vector. 

Figure 2. The position of neighboring particles at different time.  

Figure 1. The contact model used in DEM.  

Figure 3. Two typical shear band patterns of soil in triaxial shear tests: (a) “X” 
shear band pattern; (b) single shear band pattern.  

Figure 4. The numerical model for the triaxial compression test.  
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From Equations (4)–(7), we have, 

DX2
BA ¼ FDX1

BA
F ¼ TT

2 fT1

�

: ð11Þ

According to continuum mechanics, the derivative tensor 
of displacement gradient defined by the relationship between 
material coordinate and space coordinate is 

D ¼ F � I; ð12Þ

where I is unit matrix. If Dij is the component of D, then 

cAB ¼
2
3

DijDij

� �1=2

; ð13Þ

ce ¼
1

nA

XnA

B¼1
cAB; ð14Þ

Table 1. The basic parameters for the numerical simulation of triaxial test.  
Particle  

size (mm) 
Particle density  

(g/cm3) 
Coefficient  
of friction 

Normal  
stiffness (MN/m) 

Tangential  
stiffness (MN/m) 

Normal contact  
strength (N/m) 

Tangential contact  
strength (N/m)  

Internal specimen  2.0  2.65  0.25  2.0  2.0  0  0 
Membrane structure  0.8  2.65  0.0  0.02  0.02  100.0  100.0 
Wall  —  —  0.0  25.0  25.0  —  —  

Figure 6. The deformation of the triaxial compression specimen at different 
axial strains.  

Figure 5. The deviatoric stress� axial strain curves for the triaxial 
compression test.  

Figure 7. The changes of porosity of the measurement balls in the triaxial test.  

Figure 8. The positions of the particles at the axial strain of 8.8%� in vertical 
section of the specimen.  
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where cAB is an intermediate variable, and ce is the effective 
strain of particle A, around which there are nA neighboring 
particles. 

The definition of effective strain, which is easily understood 
and acceptable from macro-scope for granular assembly, is 
introduced to intuitively exhibit the development process of 
shear bands in the next parts of this paper. 

Generation of triaxial specimen and enclosed 
membrane of granular materials 

In the discrete element method, it is very important to 
generate the membrane particles in simulating triaxial tests. 
To simulate the evolution of shear bands in triaxial 
tests based on discrete element method, two methods of parti-
cles generation can be used (Geraldine and Catherine 2008). 

Figure 9. The effective strain distributions in the vertical section (x-direction) of the triaxial compression specimen at different axial strains.  

Figure 10. The effective strain distributions in the vertical section (y-direction) of the triaxial compression specimen at different axial strains.  
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Figure 11. The effective strain distributions in the cross section (z-direction) at the place of 1/4 height of the specimen at different axial strains.  

Figure 12. The effective strain distributions in the cross section (z-direction) at the place of 3/8 height of the specimen at different axial strains.  

Figure 13. The effective strain distributions in the cross section (z-direction) at the place of 1/2 height of the specimen at different axial strains.  
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One method is to generate the particles of internal specimen 
and enclosed membrane independently, while the particles of 
membrane are smaller than those of internal specimen. This 
method is called the “step-by-step membrane-forming 
method.” Another method is to generate the particles of the 
internal specimen and the enclosed membrane at the same 
time, but the properties of the outmost particles of the speci-
men are set as those of the membrane. This method is named 
as “once membrane-forming method.” With these two particle 
generation methods above, we investigate the progressive 
failure and the evolution of the shear bands in triaxial tests with 
DEM simulation, and the effects of particle generation methods 
on the patterns of shear bands in the triaxial specimens. In fact, 
it will be found that the results based on these two methods rep-
resent two typical failure modes, which are usually encountered 
in triaxial tests in laboratory, as shown in Figure 3. 

Failure mode analysis of shear band in triaxial test 

Discrete element simulation with step-by-step 
membrane-forming method of triaxial test 

The specimen of triaxial test has a cylindrical structure with the 
height of 80.5 mm and the diameter of 38 mm. First, 14,064 

particles with diameter of 2 mm and the porosity of 0.2595 
are generated to form the internal specimen. Then, the particles 
with diameter of 0.8 mm in the outmost layer of the specimen 
are generated as the membrane structure. Rigid plates, on 
which the compression forces will be applied, are set on the 
top and bottom of the specimen, as shown in Figure 4a. The 
whole discrete element model of the triaxial test is illustrated 
in Figure 4, where “a” is the view of overall specimen; “b” is 
the view of vertical section of the specimen, where the digits 
1 � 9 are the numbers of measurement ball arranged; and “c” 
is the view of transverse section of the specimen. The material 
parameters used in the analysis are presented in Table 1. 

A confining pressure of 0.2 MPa is imposed on the internal 
specimen through the membrane structure. The membrane 
structure is composed of the particles in the outermost layer 
of the specimen. According to Geraldine and Catherine 
(2008), the confining pressure can be applied on individual 
particles in the membrane region. 

During the compressing process, the confining pressure is 
constant, and the compression load is applied continuously 
by displacement control of the rigid plates, which are forced 
to move toward each other vertically. To describe the num-
erical results of the granular specimen during this process, 

Figure 14. The effective strain distributions in the cross section (z-direction) at the place of 5/8 height of the specimen at different axial strains.  

Figure 15. The effective strain distributions in the cross section (z-direction) at the place of 3/4 height of the specimen at different axial strains.  
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the deformation of the specimen, porosities of measurement 
balls, and effective strain distributions in the specimen are 
presented. 

Figure 5 gives the curve of axial deviatoric stress� strain for 
the specimen, which illustrates that a peak axial stress value of 
0.487 MPa arrives at axial strain of 7%, then a softened axial 
stress� strain curve appears. Figure 6 gives the deformation of 
the specimen at different axial strains. It can be seen that 
deflexion of the specimen occurs after the axial strain of 
5.5%. Porosities of measurement balls at various axial strains 

are illustrated in Figure 7, where the porosities of the measure-
ment balls (1), (5), and (9) are significantly greater than those of 
the other measurement balls near the axial strain of 5.5%. 
Figure 8 gives the positions of the particles at the axial strain 
of 8.8%�in vertical section of the specimen, which shows that 
the relative movements of the particles and the deformation 
of the specimen are mainly concentrated in a diagonal 
shear band, while the positions of particles in other parts of 
the specimen change little. It also can be seen that the measure-
ment balls (1), (5), and (9) are just located in the diagonal shear 
band. 

To better understand the progressive development and 
spatial distribution of the shear band in triaxial compression 
specimen under this condition, Figures 9–15 give the effective 
strain distributions along x-direction and y-direction in the 
vertical sections, respectively, and at different heights of the 
triaxial specimen in the transverse sections with increasing 
axial strains. 

Figure 9 gives the effective strain distributions along 
x-direction in the vertical section of the triaxial specimen with 
increasing axial strains. Figure 10 gives the effective strain 
distributions along y-direction in the vertical section of the 
triaxial specimen with increasing axial strains. It can be seen 
that a diagonal shear band develops distinctly after the axial 
strain of 5.5%� and runs through the triaxial specimen 
progressively in these two directions. 

Figures 11–15 give the effective strain distributions in the 
cross section along z-direction at the heights of 2/8h, 3/8h, 
4/8h, 5/8h, and 6/8h (h is the height of the triaxial specimen) 
of the triaxial specimen, respectively, with increasing axial 
strains. It can be seen that the shear band develops not only 
in these cross sections distinctly after the axial strain of 
5.5%� but also in different parts for different cross sections, 
namely from one side of the cross section to the middle and 
then to the other side of the cross section as the height of 
the cross section increases. 

According to the effective strain distributions in the vertical 
sections and cross sections above, the sketch of a complete 
shear band like a scraper bowl which originates from the upper 
triaxial specimen and slants through the sample can be figured 
out, as is shown in Figure 16. 

Figure 16. The outline of the shear band in triaxial test.  

Figure 17. The numerical model for the triaxial compression test.  

Figure 18. The axial deviatoric stress� strain curve for the triaxial compression 
test.  
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From the analysis above, it can be concluded that the 
development of shear band starts before the peak value of 
stress and that the deformation is mainly concentrated in a 
diagonal shear band while the other parts of the specimen have 
less deformation. 

Discrete element simulation with once membrane- 
forming method of triaxial test 

The specimen of triaxial test has a cylinder structure with the 
height of 80.5 mm and the diameter of 40 mm. Total 168,54 
particles with diameter of 2 mm and the porosity of 0.2595 
are generated in the specimen, where the outmost green layer 
are set as the membrane structure, as can be seen in Figure 17, 
where “a” is the view of overall specimen; “b” is the view of 
vertical section of the specimen, where the digits 1–13 are 
the numbers of measurement ball arranged; and “c” is the view 
of transverse section of the specimen. The boundary and load-
ing conditions are the same as that of Figure 4. The material 
parameters used in the analysis are presented in Table 2. 

A confining pressure of 0.2 MPa, which is constant during 
the compressing process, is imposed on the internal specimen 
through the enclosed membrane. The rigid plates are forced to 
move toward each other vertically by displacement control. 
During the compression process, the deformation of the speci-
men, the porosities of measurement balls, and the effective 
strain distributions in the specimen are analyzed. 

The curve of axial deviatoric stress� strain for the specimen 
is given in Figure 18, which illustrates that a peak axial 
deviatoric stress value of 1.08 MPa arrives at axial strain of 
6.8%, followed by a little soften stress� strain curve. The peak 
stress is greater than previous one as the constraints of the 
membrane boundary in this case are stronger. 

The deformation of the specimen at different axial strains is 
given in Figure 19. It cannot be seen that the deformation loca-
lizes in the inner specimen but that swelling of the middle of 
specimen occurs after the axial strain of 5.5%. Figure 20 gives 
the porosities of measurement balls at various axial strain, 
which illustrates that the porosities of the measurement balls 

Table 2. The basic parameters for the numerical simulation of triaxial test.  
Particle  

size (mm) 
Particle density  

(g/cm3) 
Coefficient  
of friction 

Normal  
stiffness (MN/m) 

Tangential  
stiffness (MN/m) 

Normal contact  
strength (N/m) 

Tangential contact  
strength (N/m)  

Internal specimen  2.0  2.65  0.25  2.0  2.0  0  0 
Membrane structure  2.0  2.65  0.0  0.02  0.02  100.0  100.0 
Wall  —  —  0.0  25.0  25.0  —  —  

Figure 19. The deformation of particle sample for the triaxial compression test.  

Figure 20. The porosity changed in the measure spheres of granular sample.  

Figure 21. The positions of the granules at the axial strain of 8.8%� in the 
vertical section of sample.  
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(2), (7), and (10) are significantly greater than those of the other 
measurement balls near the axial strain of 5.5%, while the por-
osities of the measurement balls (1), (3), (11), and (13) are very 
less than others. Figure 21 gives the positions of the particles at 
the axial strain of 8.8%� in vertical section of the specimen, 
which shows that the relative movements of the particles and 
the deformation of the specimen are mainly concentrated in 

two intersection shear bands like the shape of “X” while the 
positions of particles in other parts of the specimen change 
little. It also can be seen that the measurement balls (2), (7), 
and (10) are just located in the shear bands. 

In this case, the progressive development and spatial distri-
bution of the shear band in triaxial compression specimen can 
be seen from Figures 22–28, which give the effective strain 

Figure 22. The effective strain distributions in the vertical section (x-direction) of granular assembly with increasing vertical displacements.  

Figure 23. The effective strain distributions in the vertical section (y-direction) of granular assembly with increasing vertical displacements.  
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distributions along x-direction and y-direction in the vertical 
sections, respectively, and at different heights of the triaxial 
specimen in the transverse sections with increasing axial strains. 

Figures 22 and 23 give the effective strain distributions 
along x-direction and y-direction in the vertical section of 
the triaxial specimen with increasing axial strains, respectively. 
It can be seen that two intersection shear bands develop 
distinctly after the axial strain of 5.5%� and run through the 
triaxial specimen progressively in these two directions. 

The effective strain distributions in the cross section along 
z-direction at the heights of 2/8h, 3/8h, 4/8h, 5/8h, and 6/8h 
(h is the height of the triaxial specimen) of the specimen are 
given in Figures 24–28, respectively. Also the changes of the 
effective strain distributions with increasing axial strains are 
given in each figure. It can be seen that the shear bands develop 
distinctly in different parts for different cross sections after the 
axial strain of 5.5%, namely the bigger circular ring in the upper 
cross section, then less and less circular ring down to the middle 
part and then bigger and bigger circular ring down to the 
bottom. 

By comprehensive analysis of the effective strain distributions 
in the vertical sections and cross sections, an axial symmetric 
shear band like two hoppers stacking as the shape of rotational 
“X” in triaxial sample can be figured out, as is shown in Figure 
29. It also can be concluded that the shear band starts to develop 
before the peak stress and that the deformation is mainly concen-
trated in an axial symmetric shear band like two hoppers stacking 
while the other parts of the specimen have little change. 

It can be seen that different particle-generation methods 
result in different failure modes from the analysis above, which 
is mainly due to the difference of the boundary constraints. For 
the method of “step-by-step membrane-forming method,” the 
contacts between the membrane particles and inner particles 
are a little weak, so that the constraint of the membrane bound-
ary is also weak, and it is more deformable and easy to trigger 
the development of a single shear band. For the method of 
“once membrane-forming method,” the contacts between the 
membrane particles and inner particles are very tight, so that 
the constraint of the membrane boundary is strong and the 
axial symmetric shear band is formed in the end. 

Figure 24. The effective strain distributions in the cross section (z-direction, the 1/4 height of particle sample) of granular assembly with increasing vertical 
displacements.  

Figure 25. The effective strain distributions in the cross section (z-direction, the 3/8 height of particle sample) of granular assembly with increasing vertical 
displacements.  
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Figure 28. The effective strain distributions in the cross section (z-direction, the 3/4 height of particle sample) of granular assembly with increasing vertical 
displacements.  

Figure 27. The effective strain distributions in the cross section (z-direction, the 5/8 height of particle sample) of granular assembly with increasing vertical 
displacements.  

Figure 26. The effective strain distributions in the cross section (z-direction, the 1/2 height of particle sample) of granular assembly with increasing vertical 
displacements.  
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Conclusion 

Triaxial tests are applied widely to study the mechanical beha-
viors of granular materials. However, the shear bands during 
the failure process of granular materials are hardly observed 
in three dimensions. In this paper, the DEM is used to analyze 
the triaxial test of granular materials. The definition of the 
effective strain is presented to describe the macroscopic defor-
mation process of granular material in three dimensions based 
on the locations and displacements of particles on micro-scale. 
To illustrate the mechanism of shear bands in DEM simula-
tions, two different methods are adopted to generate the parti-
cles and the membrane for triaxial samples. The first is called 
the step-by-step membrane-forming method, which generates 
the internal particles first, then encloses the membrane around 
the particles; the second is called the once membrane-forming 
method, which generates the internal particles and the enclosed 
membrane simultaneously. With these two particle-generation 
methods, the effective strain distributions in longitudinal sec-
tion and transverse section of the triaxial specimen are simu-
lated with DEM to investigate the progressive failure and the 
evolution of the shear bands in three dimensions. Two different 
typical shear band failure modes are observed in triaxial tests 
under the sample generation methods accordingly. One is a 
single shear band like a scraper bowl which originates from 
the upper part then slants through the sample; the other is an 
axial symmetric shear band like two hoppers stacking as the 
shape of rotational “X” in triaxial specimen. During the genera-
tions of shear banks, the deformation of granular materials is 
mainly concentrated in the shear band. The generation 
mechanisms of the two shear bands are discussed. 
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